李建平 研究员

作者: 时间:2016-12-04 点击数:

个人简述:(不超过300字)

1982年出生于湖南慈利,分别于西南交通大学和北京邮电大学获得硕士(2007)、博士学位(2012)。先后在怀化学院、暨南大学等高校任职;入选广东省特支计划科技创新青年拔尖人才、广州市珠江科技新星等;2020广东工业大学百人计划特聘教授。长期从事高速光纤通信领域研究,主持完成多项国家和省部级科研项目,发表SCI论文60余篇,国际国内特邀报告10余次,授权发明专利10余项。积极参与组织国际学术会议,担任ICOCN’2018ICICN’2020技术委员会共主席等。欢迎报考本人研究生。


学科领域:科学学位:信息与通信工程

专业学位:信息与通信工程

教育背景:

u 2009.9-2012.6 北京邮电大学 信息光子学与光通信研究院 物理电子学专业,获工学博士学位;

u 2004.9-2007.6 西南交通大学 信息科学与技术学院 通信与信息系统专业,获工学硕士学位;

u 2000.9-2004.7 吉首大学 物理与电子工程系 电子科学与技术专业,获理学学士学位

工作经历:

u 2020.04 - 今:百人计划特聘教授,广东工业大学信息工程学院;

u 2012.07-2020.03 讲师/副研究员/研究员,暨南大学光子技术研究院;

u 2016.12-2017.12 访问学者,南洋理工大学电子电气与信息工程学院;

u 2007.07-2009.08 讲师, 怀化学院物理与信息工程系。

学术兼职:

u IEEE会员、美国光学学会(OSA)会员;

u International Conference on Information, Communication and Networks ICICN 2020: Track Co-chairs分会共主席


主要荣誉:

广东省特支计划科技创新青年拔尖人才、广州市珠江科技新星等。


主要论文:

[1]. J. Li*, J. Hu, D. Zou, W. Wang, F. Li, Q. Sui, J. Zhou, X. Yi, Z. Li, “Terabit Mode Division Multiplexing Discrete Multitone Signal Transmission over OM2 Multimode Fiber,” IEEE J. Sel. Top. Quantum Electron., Vol. 26, No. 4, pp. 4501308, 2020.

[2]. B. Yu, Y. Chen, J. Pan, B., F. Li, L. Wan, X. Guo, J. Li* and Z. Li, “Silica-microsphere-cavity-based microwave photonic notch filter with ultra-narrow bandwidth and high peak rejection,” Opt. Lett., Vol. 44, No. 6, pp. 1411-1414, 2019.

[3]. Y. Sun, D. Zou, J. Li*, F. Li, Z Li, “Demonstration of low-cost EML based 240 Gbit/s DFT-spread DMT signal transmission over few-mode fiber with cylindrical vector beam multiplexing,” IEEE Access, Vol. 7, pp. 77786-77791, 2019.

[4]. J. Li and Z. Li, “Vector mode based optical direct detection orthogonal frequency division multiplexing transmission in short-reach optical link,” Front. Optoelectron., invited review, s12200-018-0836-7, 2019.

[5]. J. Li, J. Zhang, F. Li, X. Huang, S. Gao and Z. Li, “DD-OFDM transmission over few-mode fiber based on direct vector mode multiplexing,” Opt. Express, Vol. 26, No. 14, pp. 18749-18757, 2018.

[6]. J. Li, X. Zhang, Z. Li, X. Zhang, G. Li, C. Lu, “Theoretical studies on the polarization-modulator-based single-side-band modulator used for generation of optical multicarrier,” Opt. Express, Vol. 22, No. 12, pp. 14087-14095, 2014.

[7]. J. Li, X. Zhang, F. Tian, L. Xi, “Theoretical and experimental study on generation of stable and high-quality multi-carrier source based on re-circulating frequency shifter used for Tb/s optical transmission,” Opt. Express, Vol. 19, No. 2, pp. 848-860, 2011.

[8]. J. Li, X. Li, X. Zhang, F. Tian, L. Xi, “Analysis of the stability and optimizing operation of the single-side-band modulator based on re-circulating frequency shifter used for the T-bit/s optical communication transmission,” Opt. Express, Vol. 18, No. 17, pp. 17597-17609, 2010.

[9]. J. Li, C. Yu, Z. Li, “Complementary frequency shifter based on polarization modulator used for generation of a high-quality frequency-locked multicarrier,” Opt. Lett., Vol. 39, No. 16, pp. 1513-1516, 2014.

[10]. J. Li, Z. Li, “Frequency-locked multicarrier generator based on a complementary frequency shifter with double recirculating frequency-shifting loops,” Opt. Lett., Vol. 38 No. 3, pp. 359-361, 2013.

[11]. J. Li, H. Ma, Z. Li and X. Zhang, “Optical Frequency Comb Generation Based on Dual-Polarization IQ Modulator Shared by Two Polarization-Orthogonal Recirculating Frequency Shifting Loops,” IEEE Photonics J., Vol. 9, No. 5, 7906110, 2017.

[12]. J. Zhang, F. Li, J. Li*, Y. Feng and Z. Li, “120 Gbit/s 2 × 2 vector modes division multiplexing DD-OFDM-32QAM free space transmission,” IEEE Photonics J., Vol. 8, No. 3, 7907008, 2016.

[13]. J. Luo, J. Li*, Q. Sui, Z. Li and C. Lu, “40Gb/s Mode-division Multiplexed DD-OFDM Transmission over Standard Multi-mode Fiber” IEEE Photonics J., Vol. 8, No. 3, 7905207, 2016.

[14]. J. Zhang, F. Li, J. Li*, Y. Feng and Z. Li, “95.16 Gb/s mode-division- multiplexing signal transmission in free-space enabled by effective- conversion of vector beams,” IEEE Photonics J., Vol. 9, No. 4, 7202809, 2017.

[15]. J. Li, X. Zhang, L. Xi, “Generation of stable and high-quality frequency-locked carriers based on improved re-circulating frequency shifter,” Opt. Commun., Vol. 285, No. 20, pp. 4072-4075, 2012.

[16]. J. Li*, Y. Zhou, Y. Feng and Z. Li, “Modal dispersion characterization of few-mode fiber based on electrical spectral interferometry with optical frequency comb,” Opt. Fiber Technol., Vol. 38, pp. 75-79, 2017.

[17]. H. Wang, J. Zhou, W. Liu, J. Li, X. Huang, L. Liu, W. Liang, C. Yu, F. Li, and Z. Li, “BGD-based Adam algorithm for time-domain equalizer in PAM-based optical interconnects,” Opt. Lett., Vol. 45, No. 1, pp. 141-144, 2020.

[18]. Z. Li, W. Wang, D. Zou, F. Li, J. Li, Q. Sui, Z. Li, “DFT Spread Spectrally Efficient Frequency Division Multiplexing for IM-DD Transmission in C-band,” J. Lightwave Technol., 2020 (Early Access paper).

[19]. Y. Zhu, L. Wan, Z. Chen, Z. Yang, D. Xia, P. Zeng, J. Song, J. Pan, Y. Feng, M. Zhang, W. Liu, J. Li, B. Zhang, Z. Li, “Effects of Shallow Suspension in Low-loss Waveguide-integrated Chalcogenide Microdisk Resonators,” J. Lightwave Technol., 2020 (Early Access paper).

[20]. Z. Chen, L. Wan, J. Song, J. Pan, Y. Zhu, Z. Yang, W. Liu, J. Li, S. Gao, Y. Liu, B. Zhang and Z. Li, “Optical, mechanical and thermal characterizations of suspended chalcogenide glass microdisk membrane,” Opt. Express, Vol. 27, No. 11, pp. 15918-15925, 2019.

[21]. Z. Lin, Z. Chen, B. Zhang, F. Li, J. Li, X. Guo, and Z. Li, “Wideband and low-error microwave frequency measurement using degenerate four-wave mixing-based nonlinear interferometer,” Opt. Lett., Vol. 44, No. 7, pp. 1848-1851, 2019.

[22]. J. Tu, Z. Liu, S. Gao, Z. Wang, J. Zhang, B. Zhang, J. Li, W. Liu, H. Tam, Z. Li, Changyuan Yu, and Chao Lu, “Ring-core fiber with negative curvature structure supporting orbital angular momentum modes,” Opt. Express, Vol. 27, No. 15, pp. 20358-20372, 2019.

[23]. J. Zhou, H. Wang, J. Wei, L. Liu, X. Huang, S. Gao, W. Liu, J. Li, C. Yu, and Z. Li, C. Yu, and C. Lu, “Adaptive moment estimation for polynomial nonlinear equalizer in PAM8-based optical interconnects,” Opt. Express, Vol. 27, No. 22, pp. 32210-32216, 2019.

[24]. D. Zou, Y. Chen, Z. Li, F. Li, L. Ding, Y. Sun, J. Li, Q. Sui, X. Yi, and Z. Li, “Comparison of null-subcarriers reservation and adaptive notch filter for narrowband interference cancellation in intra-data center interconnect with DMT signal transmission,” Opt. Express, Vol. 27, No. 4, pp. 5696-5702, 2019.

[25]. D. Zou, Y. Chen, F. Li, Z. Li, Y. Sun, L. Ding, J. Li, X. Yi, L. Li, Z. Li, “Comparison of Bit-Loading DMT and Pre-Equalized DFT-Spread DMT for 2-km Optical Interconnect System,” J. Lightwave Technol., Vol. 37, No. 10, pp. 2194-2200, 2019.

[26]. Z. Li, F. Li, S. Qi, J. Li, J. Zhou, X. Yi, Z. Li, “Beyond 100 Gb/s SEFDM signal IM/DD transmission utilizing TDE with 20% bandwidth compression,” IEEE Communications Letters, Vol. 23, No. 11, pp. 2017-2021, 2019.

[27]. Y. Bao, X. Yi, Z. Li, Q. Chen, J. Li, X. Fan and X. Zhang, “A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-mu s response time,” Light-Sci. Appl., Vol. 4, 2015.

[28]. Y. Zeng, G. Liang, B. Qiang, B. Meng, H. Liang, S. Mansha, J. Li, Z. Li, L. Li, A. Davies, E. Linfield, Ying Zhang, Y. Chong and Q. Wang, “Terahertz emission from localized modes in one-dimensional disordered systems,” Photonics Res., Vol. 6, No. 2, pp. 117-122, 2018.

[29]. Z. Liang, J. Pan, S. Gao, Q. Sui, Y. Feng, F. Li, J. Li, W. Liu and Z. Li, “Spatial resolution improvement of single-shot digital optical frequency comb-based Brillouin optical time domain analysis utilizing multiple pump pulses,” Opt. Lett., Vol. 43, No. 15, pp. 3534-3537, 2018.

[30]. Z. Liu, S. Liu, W. Xiao, J. Yang, X. Huang, Y. Feng, J. Li, W. Liu and Z. Li, “Measuring high-order optical orbital angular momentum with a hyperbolic gradually-changing-period pure-phase grating” Opt. Lett., Vol. 43, No. 13, pp. 3076-3079, 2018.

[31]. B. Guo, T. Gui, Z. Li, Y. Bao, X. Yi, J. Li, X. Feng and S. Liu, “Characterization of passive optical components with ultra-fast speed and high-resolution based on DD-OFDM,” Opt. Express, Vol. 20, No. 20, pp. 22079-22086, 2012.

[32]. Y. Bao, Z. Li, J. Li, X. Feng, B. Guan and G. Li, “Nonlinearity mitigation for high-speed optical OFDM transmitters using digital pre-distortion,” Opt. Express, Vol. 21, No. 6, pp. 7354-7361, 2013.

[33]. X. Zhang, J. Li, C. Li, M. Luo, H. Li, Z. He, Q. Yang, C. Lu and Z. Li, “Pilot-based blind phase estimation for coherent optical OFDM system,” Opt. Express, Vol. 22, No. 19, pp. 22888-22894, 2014.

[34]. Q. Chen, C. Jin, Y. Bao, Z. Li, J. Li, C. Lu, L. Yang and G. Li, “A distributed fiber vibration sensor utilizing dispersion induced walk-off effect in a unidirectional Mach-Zehnder interferometer,” Opt. Express, Vol. 22, No. 3, pp. 2167-2173, 2014.

[35]. F. Li, D. Zou, L. Ding, Y. Sun, J. Li, Q. Sui, L. Li, X. Yi and Z. Li, “100 Gbit/s PAM4 signal transmission and reception for 2-km interconnect with adaptive notch filter for narrowband interference” Opt. Express, Vol. 26, No. 18, pp. 24066-24074, 2018.

[36]. Y. Feng, X. Lu, L. Song, X. Guo, Y. Wang, L. Zhu, Q. Sui, J. Li, K. Shi and Z. Li, “Optical digital coherent detection technology enabled flexible and ultra-fast quantitative phase imaging,” Opt. Express, Vol. 24, No. 15, pp. 17159-17167, 2016.

[37]. X. Zhang, Z. Li, J. Li, C. Yu, Alan P. Lau and C Lu, “Low-cost coherent receiver for long-reach optical access network using single-ended detection,” Opt. Lett., Vol. 39, No. 18, pp. 5248-5250, 2014.

[38]. C. Jin, Y. Bao, Z. Li, T. Gui, H. Shang, X. Feng, J. Li, X. Yi, C. Yu, G. Li and C. Lu, “High-resolution optical spectrum characterization using optical channel estimation and spectrum stitching technique,” Opt. Lett., Vol. 38 No. 13, pp. 2314-2316, 2013.

[39]. C. Jin, N. Guo, Y. Feng, L. Wang, H. Liang, J. Li, Z. Li, C. Yu and C. Lu, “Scanning-free BOTDA based on ultra-fine digital optical frequency comb,” Opt. Express, Vol. 23, No. 4, pp. 5277-5284, 2015.

[40]. X. Xu, E. Zhou, N. Liu, T. Zuo, Q. Zhong, L. Zhang, Y. Bao, X. Zhang, J. Li, and Z. Li, “Advanced modulation formats for 400-Gbps short-reach optical inter-connection,” Opt. Express, Vol. 23, No. 1, pp. 492-500, 2015 (Invited paper).

[41]. F. Tian, X. Zhang, J. Li, L. Xi, “Generation of 50 stable frequency-locked optical carriers for Tb/s multicarrier optical transmission using a recirculating frequency shifter,” J. Lightwave Technol., Vol. 29, No. 8, pp. 1085-1091, 2011.

[42]. X. Tang, Z. Fang, Y. Zhai, X. Jiao, N. Gao, X. Zhang, L. Xi, J. Li, W. Zhang, “A Reconfigurable Optical Logic Gate with up to 25 Logic Functions Based on Polarization Modulation with Direct Detection” IEEE Photonics J., Vol. 9, No. 2, 7802011, 2017.

[43]. Y. Li, J. Deng, J. Li, and Z. Li, “Sensitive Orbital Angular Momentum (OAM) Monitoring by Using Gradually Changing-Period Phase Grating in OAM-Multiplexing Optical Communication Systems,” IEEE Photonics J., Vol. 8, No. 2, 7902306, 2016.

[44]. Y. Feng, J. Luo, Y. Li, J. Li, and Z. Li, “Mode Multiplexing and High Efficient Switching in Few-Mode Fiber Based on Modeled Blazed Grating,” IEEE Photonics J., Vol. 8, No. 3, 2016.

[45]. J. Yuan, L. Xi, D. Zhao, H. Xu, X. Tang, W. Zhang, J. Li and X. Zhang, “OSNR monitoring in presence of fiber nonlinearities for coherent Nyquist-WDM system,” Opt. Commun., Vol. 380, pp. 10-14, 2016.

[46]. Z. Li, H. Shang, J. Li, C. Yu, X. Feng, B. Guan and C. Lu, “Broadband and linear photonic RF phase shifter based on DBR fiber lasers and polarization sensitive optical phase modulator,” Opt. Commun., Vol. 297, pp. 55-58, 2013.

[47]. P. Zhang, L. Xi, J. Yuan, X. Tang, W. Zhang, J. Li, and X. Zhang, “Fiber nonlinearity-insensitive OSNR monitoring for coherent PM-QPSK-Nyquist-WDM system,” Opt. Fiber Technol., Vol. 36, pp. 215-221, 2017.

[48]. Z. Li, H. Shang, X. Feng, J. Li, D. Feng and B. Guan, “Large-Range Switchable Microwave and Millimeter-Wave Signal Generator Based on a Triple-Wavelength Fiber Laser,” IEICE T. Electron., Vol. E96.C, No. 2, pp. 197-200, 2013.

[49]. J. Zhang, X. Wu, L. Lu, J. Li*, J. Tu, Z. Li and C. Lu, “1.12 Tb it /s fiber vector eigenmode multiplexing transmission over 5 km FMF with Kramers Kronig receiver,” 2020 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC 2020), paper. W1D.5, 2020.

[50]. D. Zou, Z. Zhang, F. Li, Q. Sui, J. Li, X. Yi, and Z. Li, “Single λ 500-Gbit/s PAM signal transmission for Data Center Interconnects utilizing Mode Division Multiplexing,” 2020 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC 2020), paper. W1D.6, 2020.

[51]. F. Li, Z. Li, Q. Sui, J. Li, X. Yi. L. Li, and Z. Li, “200 Gbit/s (68.25 Gbaud) PAM8 Signal Transmission and Reception for Intra-Data Center Interconnect,” 2019 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC 2019), paper. W4I.3, 2019.

[52]. F. Li, D. Zou, Q. Sui, J. Li, X. Yi. L. Li, and Z. Li, “Optical Amplifier-free 100 Gbit/s/lamda PAM-N Transmission and Reception in O-band over 40-km SMF with 10-G Class DML,” 2019 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC 2019), paper. Tu2F.4, 2019.

[53]. J. Zhou, M. Guo, Y. Qiao, H. Wang, L. Liu, W. Liu, C. Yu, J. Li and Z. Li, “Digital Signal Processing for Faster-than-Nyquist Non-Orthogonal Systems: An Overview,” 26th International Conference on Telecommunications (ICT 2019), paper. OW4H.4, 2019.

[54]. J. Zhang, F. Li, J. Li*, Z. Li, “228 Gb/s vector-mode-division-multiplexing signal transmission in free-space based on optical frequency comb,” 16th International Conference on Optical Communications and Networks (ICOCN 2017), 2017.

[55]. J. Luo, J. Li*, Q. Sui, Z. Li, “30 Gb/s 2×2 MDM-DD-OFDM Transmission over 200m Conventional MMF Link without MIMO Compensation,” Asia Communications and Photonics Conference 2015 (ACP 2015), paper. AS4D.2, 2015.


知识产权:

1. 一种微腔耦合系统的制备方法和微波光子滤波器,申请号:201811581230.6

2. 一种光频梳产生方法及其偏振正交单边带调制装置,专利号:ZL201610623556.5

3. 一种基于混合模式复用的光通信系统,专利号:ZL201610623557.X

4. 一种长距离少模光纤特性测量方法及装置,专利号:ZL201610623443.5

5. 基于偏振调制的线性光调制方法及装置,专利号:ZL201511032992.7

6. 多载波光信号产生方法及装置,专利号:ZL201110280966.1

7. 监测光性能参数的装置、方法和光传输系统,专利号:2014800701071

8. Apparatus and method for monitoring optical performance parameter, and optical transmission system,美国专利号:US10484088B2

9. Device and method for monitoring optical performance parameter, and optical transmission system,欧盟专利号:EP3113390B1

10. Apparatus and method for monitoring optical performance parameter, and optical transmission system,日本专利号:JP6325738

11. 正交双偏振差分四相相移键控发射与接收的方法及其系统,专利号:ZL201010226806.4.

科研项目:

1. 国家重点研发计划子课题:P比特级光传输系统与关键技术研究(2018YFB1800900),经费:161.05万,2019-2023,主持;

2. 国家自然科学基金面上项目:面向弹性光网络的高性能光频梳研究(61575082),经费:66万,2016-2019,主持;

3. 国家自然科学基金青年项目:光纤Kerr非线性信号的监测和管理机制研究(61307092),经费:24万,2014-2016,主持;

4. 国家863计划子课题:100Gb/s光互连光收发模块及系统验证(2015AA017102),经费:45.6万,2015-2017,主持;

5. “广东省特支计划科技创新青年拔尖人才项目,2015TQ01X606,经费:30万,2016-2018,主持;

6. “广州市珠江科技新星项目:面向云数据中心超高速光互连的关键技术研究(201710010051),经费:30万,2017-2020,主持;

7. 广东省自然科学基金项目面向数据中心光互连系统的模式复用关键技术研究(2015A030313328),经费:10万,2015-2018,主持。


教学活动:

我的团队:

隶属于信息工程学院先进光子技术院,团队专注于新一代光纤通信、通信信号处理、光集成器件等研究。


  • 附件【LIjianping.jpg】已下载

地址:广州市番禺区广州大学城外环西路100号广东工业大学行政楼325    邮编:510006

电话:020-39322722    邮箱:yzb@gdut.edu.cn