本人以第一作者或者通讯作者身份已经在国际知名数学期刊发表SCI论文近60篇,代表性论文如下: [1] Jiahong Wu, Xiaoping Zhai, Global small solutions to the 3D compressible viscous non-resistive MHD system,  Math. Models Methods Appl. Sci., 2023, online. 
 
 [2] Xiaoping Zhai, Yongsheng Li, Fujun Zhou, Global large solutions to the three dimensional compressible Navier-Stokes equations, SIAMJMA, 52 (2020), 1806–1843. 
 
 [3] Hongyun Peng, Xiaoping Zhai, The Cauchy problem for the n-dimensional compressible Navier-Stokes equations without heat conductivity, SIAMJMA, 55 (2023), no. 2, 1439–1463. 
 
 [4] Xiaoping Zhai,  Linear stability analysis of the Couette flow for the two dimensional non-isentropic compressible Euler equations, J. Differential Equations, 369 (2023), 215–228. 
 
 [5] Xiaoping Zhai,  Stability for the 2D incompressible MHD equations with only magnetic diffusion, J. Differential Equations, (2023), online. 
 
 [6]  Xiaoping Zhai,  Yongsheng Li, Global wellposedness and large time behavior of solutions to the N-dimensional compressible Oldroyd-B model, J. Differential Equations, 290 (2021), 116–146. 
 
 [7] Xiaoping Zhai,  Yiren Chen, Global solutions and large time behavior for the chemotaxis-shallow water system, J. Differential Equations, 275 (2021), 332–358. 
 
 [8] Xiaoping Zhai, Boqing Dong, Zhi-Min Chen, Global well-posedness for 2-D Boussinesq system with the temperature-dependent viscosity and supercritical dissipation, J. Differential Equations, 267 (2019), 364–387. 
 
 [9] Xiaoping Zhai, Zhaoyang Yin, On the well-posedness of 3-D inhomogeneous incompressible Navier-Stokes equations with variable viscosity, J. Differential Equations, 264 (2018), 2407–2447. 
 
 [10] Xiaoping Zhai,  Zhaoyang Yin, Global well-posedness for the 3D incompressible inhomogeneous Navier-Stokes equations and MHD equations, J. Differential Equations, 262 (2017), 1359–1412.   
 
 [11] Huan Xu, Yongsheng Li, Xiaoping Zhai, On the well-posedness of 2-D incompressible Navier-Stokes equations with variable viscosity in critical spaces, J. Differential Equations, 260 (2016), 6604–6637. 
 
 [12] Boqing Dong, Jiahong Wu,  Xiaoping Zhai,  Global small solutions to a special 212-D compressible viscous non-resistive MHD system, J. Nonlinear Sci., 33 (2023), Paper No. 21. 
 
 [13] Yongsheng Li, Huan Xu, Xiaoping Zhai, Global smooth solutions to the 3D compressible viscous non-isentropic magnetohydrodynamic flows without magnetic diffusion, JGA. 33 (2023), no. 8, Paper No. 246, 32 pp.   
 
 [14] Xiaoping Zhai, Yongsheng Li, Yajuan Zhao, Global small solutions to the inviscid Hall-MHD system, J. Math. Fluid Mech., 23 (2021), Paper No. 96, 9 pp.  
 
 [15] Xiaoping Zhai,  Zhi-Min Chen, Long-time behavior for three dimensional compressible viscous and heat-conductive gases, J. Math. Fluid Mech., 22 (2020), Paper No. 38, 17 pp. 
 
 [16]  Zhi-Min Chen, Xiaoping Zhai, Global large solutions and incompressible limit for the compressible Navier-Stokes equations, J. Math. Fluid Mech., 21 (2019), Paper No. 26, 23 pp. 
 
 [17] Boqing Dong,  Zhuan Ye, Xiaoping Zhai,  Global regularity for the 2D  Boussinesq equations with temperature-dependent viscosity, J. Math. Fluid Mech., 22 (2020), Paper No. 2, 16 pp. 
 
 [18] Xiaoping Zhai,  Yiren Chen, Yongsheng Li,  Large global solutions of the compressible Navier-Stokes equations in three dimensions, Discrete Contin. Dyn. Syst,. 43 (2023), 309–337. 
 
 [19] Xiaoping Zhai, Xin Zhong,  Global solutions to the 2D compressible Navier-Stokes equations with some large initial data, Acta Math. Sci. Ser. B (Engl. Ed.)   43 (2023), no. 3, 1251–1274. 
 
 [20] Xiaoping Zhai, Yiren Chen, Yongsheng Li, Yongye Zhao, Optimal well-posedness for the pressureless Euler-Navier-Stokes system, J. Math. Phys., 64 (2023), no. 5, Paper No. 051506, 13 pp. 
 
 [21] Xiaoping Zhai, Global solutions to the n-dimensional incompressible Oldroyd-B model without damping mechanism, J. Math.Phys., 62 (2021), no. 2, Paper No. 021503, 17 pp. 
 
 [22] Xiaoping Zhai, Zhi-Min Chen, Global well-posedness for N-dimensional Boussinesq system with viscosity depending on temperature, Commun. Math. Sci., 16 (2018), no. 5, 1427–1449.  |