主要论文 |
[36] W.H. Xiao, S.H. Yang, R. Jiang, Q.F. Huang, X.Y. Shi, Y.H. Tsang, L.Y. Shao*, Z.P. Sun*, V4C3 MXene-derived Zn0.99V5O12·nH2O nanoribbons as advanced cathodes for ultra-long life aqueous zinc-ion batteries, Journal of Materials Chemistry A, 2024, 12, 5530-5539. [35] J.D. Guan, Q.F. Huang, L.Y. Shao*, X.Y. Shi, D.D. Zhao, L.B. Wang*, Z.P. Sun*, Polyanion-Type Na3V2(PO4)2F3@rGO with High-Voltage and Ultralong-Life for Aqueous Zinc Ion Batteries, Small, 2023, 2207148. [34] Q.F. Huang, L.Y. Shao*, X.Y. Shi, J.D. Guan, J.L. Xu, Y.X. Wu, Z.P. Sun*, Na3V2O2(PO4)2F nanoparticles@reduced graphene oxide: a high-voltage polyanionic cathode with enhanced reaction kinetics for aqueous zinc-ion batteries, Chemical Engineering Journal, 2023, 468, 143738. [33] J.Z. Hong, L. Xie, C.L. Shi, X.Y. Lu, X.Y. Shi, J.J. Cai, Y.X. Wu, L.Y. Shao*, Z.P. Sun*, High-performance aqueous zinc-ion batteries based on multidimensional V2O3 nanosheets@single-walled carbon nanohorns@reduced graphene oxide composite and optimized electrolyte, Small Methods, 2023, 2300205. [32] L. Yu, L.Y. Shao*, R.M. Pan, J.D. Guan, J.R. Lin, X.Y. Shi, J.J. Cai, J.C. Sun, C.C. Chen*, Y.X. Wu, Z.P. Sun*, Facile Development of Disused Nickel Foams into Low-Cost and High-Performance Electrode Materials for Sodium-Ion Batteries, ACS Sustainable Chemistry & Engineering, 2023, 11, 10324-10332. [31] J.L. Luo, L.Y. Shao*, L. Yu, X.Y. Shi, J.L. Xu, J.C. Sun, L.F. Hang*, Y.X. Wu, Z.P. Sun*, Self-intercalated quasi-2D structured V5Se8 wrapped with multi-walled carbon nanotubes toward advanced sodium ion batteries, Materials Today Physics, 2023, 35, 101099. [30] R. Wang, Y. Yang, X.C. Xu, S.J. Chen, A. Trukhanov, R.Y. Wang*, L.Y. Shao*, X. Lu*, H. Pan*, Z.P. Sun*, Interface engineering and heterometal-doped FeOOH/Ga-Ni3S2 nanosheet arrays for efficient electrocatalytic oxygen evolution, Inorganic Chemistry Frontiers, 2023, 10, 1348-1356. [29] J.D. Guan, L.Y. Shao*, L. Yu, S.G. Wang, X.Y. Shi, J.J. Cai, Z.P. Sun*, Two-dimensional Mg0.2V2O5·nH2O nanobelts derived from V4C3 MXenes for highly stable aqueous zinc ion batteries, Chemical Engineering Journal, 2022, 443, 136502. [28] L. Yu, L.Y. Shao*, R.M. Pan, J.R. Lin, J.D. Guan, X.X. Shi, J.J. Cai, C.C. Chen, Z.P. Sun*, Trash to treasure: Carbon-free ZnSe derived from waste zinc foil as a high-rate and long-life anode material enabling fast-charging sodium-ion batteries, Journal of Power Sources, 2022, 542, 231801. [27] L. Xie, W.H. Xiao, X.X. Shi, J.Z. Hong, J.J. Cai, K.L. Zhang, L.Y. Shao*, Z.P. Sun*, VO2·0.26H2O Nanobelts@Reduced Graphene Oxides as Cathode Materials for High-Performance Aqueous Zinc Ion Batteries, Chemical Communications, 2022, 58, 13807-13810. [26] S.G. Wang, T.T. Cui, L.Y. Shao*, S.H. Yang, L. Yu, J.D. Guan, X.X. Shi, J.J. Cai, Z.P. Sun*, In-situ fabrication of active interfaces towards FeSe as advanced performance anode for sodium-ion batteries, Journal of Colloid and Interface Science, 2022, 627, 922-930. [25] F.Y. Qi, L.Y. Shao*, X.Y. Lu, G.P. Liu, X.Y. Shi, Z.P. Sun*, MXene-derived TiSe2/TiO2/C heterostructured hexagonal prisms as high rate anodes for Na-ion and K-ion batteries, Applied Surface Science, 2022, 605, 154653. [24] X.C. Xu, R. Wang, S.J. Chen, A. Trukhanov, Y.X. Wu, L.Y. Shao*, L. Huang*, Z.P. Sun*, Interface engineering of hierarchical P-doped NiSe/2H-MoSe2 nanorod arrays for efficient hydrogen evolution, Inorganic Chemistry Frontiers, 2022, 9, 5507-5516. [23] L. Yu, S. Liu, L.Y. Shao*, X. Wang, J.D. Guan, X.X. Shi, J.J. Cai, Z.P. Sun*, Self-supporting Na3V2(PO4)3 as cathode for aqueous zinc ion batteries, Materials Letters, 2022, 324, 132637. [22] Q.F. Huang, R.M. Pan, H.D. Peng, Y.Q. Wang, X.Y. Shi, J.J. Cai, L.Y. Shao*, Z.P. Sun*, Application of Vanadium Phosphate in Aqueous Zinc-ion Batteries, Chinese Journal of Engineering, 2022, DOI: 10.13374/j.issn2095-9389.2022.03.19.002. [21] L. Yu, L.Y. Shao*, S.G. Wang, J.D. Guan, X.Y. Shi, J.J. Cai, N. Tarasenko, Z.P. Sun*, A low-cost NiSe2 derived from waste nickel foam as a high-performance anode for sodium ion batteries, Materials Today Physics, 2022, 22, 100593. [20] S.G. Wang, L.Y. Shao*, L. Yu, J.D. Guan, X.Y. Shi, Z.P. Sun*, J.J. Cai, H.T. Huang, A. Trukhanov, Niobium Carbide as a Promising Pseudocapacitive Sodium‐Ion Storage Anode, Energy Technology, 2021, 2100298. [19] F.D. Wu, S.G.Wang, C.H. Chen, L.Y. Shao*, Xiaoyan Shi, Zhipeng Sun*, Preparation and electrochemical Na-storage property of SnSe2 nanosheets, Materials Letters, 2021, 293, 129713. [18] L.Y. Shao, S.G. Wang, J.P. Qi, Z.P. Sun*, X.Y. Shi,Y.S. Shi, X. Lu*, Highly infiltrative micro-sized Cu2Se as advanced material with excellent rate performance and ultralong cycle-life for sodium ion half/full batteries, Materials Today Physics, 2021, 19, 100422. [17] L.Y. Shao, J.Z. Hong, S.G. Wang, F.D. Wu, F. Yang, X.Y. Shi, Z.P. Sun*, Urchin-like FeS2 hierarchitectures wrapped with N-doped multi-wall carbon nanotubes@rGO as high-rate anode for sodium ion batteries, Journal of Power Sources, 2021, 491, 229627. [16] L.Y. Shao, S.G. Wang, F.D. Wu, X.X. Shi, Z.P. Sun*, Y.X. Tang*, Pampas grass-inspired FeOOH nanobelts as high performance anodes for sodium ion batteries, Journal of Energy Chemistry, 2021, 54,138-142. [15] L.Y. Shao, J.D. Guan, S.G. Wang, L. Yu, X.Y. Shi, Z.P. Sun*, F.Y. Cheng*, Peering into few-layer black phosphorus nanosheets: from preparation to battery applications, Journal of Physics: Energy, 2021, 3,032018. [14] S. Liu, L.B. Wang, J. Liu, M. Zhou, Q.S. Nian, Y.Z. Feng, Z.L. Tao*, L.Y. Shao*, Na3V2(PO4)2F3–SWCNT: a high voltage cathode for non-aqueous and aqueous sodium-ion batteries, Journal of Materials Chemistry A, 2019, 7, 248-256. [13] L.Y. Shao, H.M. Sun, L.C. Miao, X. Chen, M. Han, J.C. Sun, S. Liu, L. Li, F.Y. Cheng*, J. Chen, Facile preparation of NH2-functionalized black phosphorene for electrocatalytic hydrogen evolution reaction, Journal of Materials Chemistry A, 2018, 6, 2494-2499. [12] L.Y. Shao, Q. Zhao, J. Chen*, MnOOH nanorods as high-performance anodes for sodium ion batteries, Chemical Communications, 2017, 53(16), 2435-2438. [11] L.Y. Shao, J. Shu*, M.M. Lao, X.T. Lin, K.Q. Wu, M. Shui**, P. Li, N.B. Long, Y.L. Ren, Hydroxylamine hydrochloride: A novel anode material for high capacity lithium-ion batteries, Journal of Power Sources, 2014, 272, 39-44. [10] P.F. Wang1, L.Y. Shao1, S.S. Qian, T.-F. Yi*, H.X. Yu, L. Yan, P. Li, X.T. Lin, M. Shui, J. Shu**, Li3-xNaxV2(PO4)3(0≤x≤3): Possible anode materials for rechargeable lithium-ion batteries, Electrochimica Acta, 2016, 200, 1-11. [9] L.Y. Shao, J. Shu*, Y.H. Tang, P. Li, X.T. Lin, M. Shui, N.B. Long, D.Y. Wang**, Phase diagram and electrochemical behavior of lithium sodium vanadium phosphates cathode materials for lithium ion batteries, Ceramics International, 2015, 41, 5164-5171. [8] L.Y. Shao, K.Q. Wu, X.X. Jiang, M. Shui, R. Ma, M.M. Lao, X.T. Lin, D.J. Wang, N.B. Long, J. Shu*, Preparation and characterization of basic carbonates as novel anode materials for lithium-ion batteries, Ceramics International, 2014, 40, 3105-3116. [7] L.Y. Shao, S.Y. Wang, K.Q. Wu, M. Shui, R. Ma, D.J. Wang, N.B. Long, Y.L. Ren, J. Shu*, Comparison of (BiO)2CO3 to CdCO3 as anode materials for lithium-ion batteries, Ceramics International, 2014, 40, 4623-4630. [6] L.Y. Shao, K.Q. Wu, X.T. Lin, M. Shui, R. Ma, D.J. Wang, N.B. Long, Y.L. Ren, J. Shu*, Sol-gel preparation of V2O5 sheets and their lithium storage behaviors studied by electrochemical and in-situ X-ray diffraction techniques, Ceramics International, 2014, 40, 6115-6125. [5] L.Y. Shao, K.Q. Wu, X.T. Lin, M. Shui*, R. Ma, D.J. Wang, N.B. Long, Y.L. Ren, J. Shu*, Enhanced electrochemical performance of CuCrO2 anode material by Ag2O coating, Journal of Electroanalytical Chemistry, 2014, 717, 153-156. [4] L.Y. Shao, J. Shu*, K.Q. Wu, X.T. Lin, P. Li, M. Shui, D.J. Wang, N.B. Long, Y.L. Ren, Low pressure preparation of spherical Si@C@CNT@C anode material for lithium-ion batteries, Journal of Electroanalytical Chemistry, 2014, 727, 8-12. [3] L.Y. Shao, R. Ma, K.Q. Wu, M. Shui, M.M. Lao, D.J. Wang, N.B. Long, Y.L. Ren, J. Shu*, Metal Carbonates as Anode Materials for Lithium Ion Batteries, Journal of Alloys and Compounds, 2013, 581, 602-609. [2] P.F. Wang1, L.Y. Shao1, H.X. Yu, J.P. Dong, T.-F. Yi*, S.S. Qian, L. Yan, P. Li, M. Shui, J. Shu**, Observation on the electrochemical reactions of Li3-xNaxV2(PO4)3(0≤x≤3) as cathode materials for rechargeable batteries, Journal of Alloys and Compounds, 2017, 690, 31-41. [1] L.Y. Shao, J. Shu*, R. Ma, M. Shui, L. Hou, K.Q. Wu, D.J. Wang, Y.L. Ren, Electrochemical Characteristics and Intercalation Mechanism of Manganese Carbonate as Anode Material for Lithium-Ion Batteries, International Journal of Electrochemical Science, 2013, 8, 1170-1180.
|