|
期刊论文: 1. Z. M. Meng, and Z. Y. Li, “Control of Fano resonances in photonic crystal nanobeams side-coupled with nanobeam cavities and their applications to refractive index sensing”, J. Phys. D: Appl. Phys. 51, 095106 (2018). 2. Z. M. Meng, and F. Qin, “Realizing Prominent Fano Resonances in Metal-Insulator-Metal Plasmonic Bragg Gratings Side-Coupled with Plasmonic Nanocavities”, Plasmonics 13, 2329 (2018). 3. Z. M. Meng, A. H. Liang and Z. Y. Li, “Fano resonances in photonic crystal nanobeams side-coupled with nanobeam cavities,” J. Appl. Phys. 121, 193102 (2017). 4. Z. M. Meng, Y. H. Hu, G. F. Ju, X. L. Zhong, W. Ding and Z. Y. Li, ”Numerical investigation of optical Tamm states in two-dimensional hybrid plasmonic-photonic crystal nanobeams,” J. Appl. Phys. 116, 043106 (2014). 5. Z. M. Meng, Y. H. Hu, C. Wang, X. L. Zhong, W. Ding and Z. Y. Li, “Design of high-Q silicon-polymer hybrid photonic crystal nanobeam microcavities for low-power and ultrafast all-optical switching,” Photon. Nanostruct. Fundam. Appl. 12, 83 (2014). 6. Z. M. Meng, X. L. Zhong, C. Wang and Z. Y. Li, “Numerical investigation of high-contrast ultrafast all-optical switching in low-refractive-index polymeric photonic crystal nanobeam microcavities,” EPL 98, 54002 (2012). 7. Z. M. Meng, F. Qin and Z. Y. Li, “Ultrafast all-optical switching in one-dimensional semiconductor-polymer hybrid nonlinear photonic crystals with relaxing Kerr nonlinearity,” J. Opt. 14, 065003 (2012). 8. Z. M. Meng, X. L. Zhong, C. Wang and Z. Y. Li, “Fabrication of air-bridged Kerr nonlinear polymer photonic crystal slab structures in the near-infrared region,” Chin. Opt. Lett. 10, 112202 (2012). 9. Z. M. Meng, F. Qin, Y. Liu, and Z. Y. Li, “High-Q microcavities in low-index one-dimensional photonic crystal slabs based on modal gap confinement,” J. Appl. Phys. 109, 043107 (2011). 10. Z. M. Meng, H. Y. Liu, W. R. Zhao, W. Zhang, H. D. Deng, Q. F. Dai, L. J. Wu, S. Lan, and A. V. Gopal, “Effects of optical force on the transmission of magnetic fluids investigated by Z-scan technique,” J. Appl. Phys. 106, 044905 (2009). 11. Z. M. Meng, H. Y. Liu, Q. F. Dai, L. J. Wu, Q. Guo, W. Hu, S. H. Liu, S. Lan, and V. A. Trofimov, “Dependence of nonlinearity enhancement on power density in photonic crystals characterized by numerical Z-scan experiments based on the finite-difference time-domain technique,” J. Opt. Soc. Am. B, 25, 555 (2008). 12. 梁安辉,蒙自明,“用视锥的光纤耦合器理论解释色觉”,科学通报,61(26), 2952-2959 (2016)。 13. Z. Y. Li and Z. M. Meng, “Polystyrene Kerr nonlinear photonic crystals for building ultrafast optical switching and logic devices,” J. Mater. Chem. C 2, 783 (2014). Feature Article 14. S. Y. Liu, L. Huang, J. F. Li, C. Wang, Q. Li, H. X. Xu, H. L. Guo, Z. M. Meng, Z. Shi, and Z. Y. Li, “Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods,” J. Phys. Chem. C 117, 10636 (2013). 15. F. Qin, Z. M. Meng, X. L. Zhong, Y. Liu, and Z. Y. Li, “Fabrication of semiconductor-polymer compound nonlinear photonic crystal slab with highly uniform infiltration based on nano-imprint lithography technique,” Opt. Express 20, 13091(2012). 16. F. Qin, Z. M. Meng, and Z. Y. Li, “Design of all-optical switching component based on pillar-array hybrid nonlinear photonic crystal cavity,” J. Opt. Soc. Am. B 29, 2314 (2012). 17. X. L. Zhong, Z. Y. Li, Z. M. Meng, and Y. S. Zhou, “Mode analysis for periodically modulated metal slits,” J. Mod. Optic. 59, 830 (2012). 18. Y. Liu, F. Qin, Z. M. Meng, F. Zhou, Q. H. Mao, and Z. Y. Li, “All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs,” Opt. Express 19, 1945 (2011). 19. F. Qin, Y. Liu, Z. M. Meng, and Z. Y. Li, “Design of Kerr-effect sensitive microcavity in nonlinear photonic crystal slabs for all-optical switching,” J. Appl. Phys. 108, 053108 (2010). 20. J. H. Lu, Z. M. Meng, H. Y. Liu, T. H. Feng, Q. F. Dai, L. J. Wu, Q. Guo, W. Hu, and S. Lan, “Modification of spontaneous emission rate of micrometer-sized light sources using hollow-core photonic crystal fibers,” Chin. Phys. B 18, 4333 (2009). 21. H. Y. Liu, Z. M. Meng, Q. F. Dai, L. J. Wu, S. Lan, and S. H. Liu, “Experimental investigation of the slow light and superluminal effects in high-quality three-dimensional colloidal photonic crystals,” Acta Physica Sinica 58, 4702 (2009). 22. H. Y. Liu, Z. M. Meng, Q. F. Dai, L. J. Wu, Q. Guo, W. Hu, S. H. Liu, S. Lan, and T. Yang, “Ultrafast carrier dynamics in undoped and p-doped InAs/GaAs quantum dots characterized by pump-probe reflection measurements,” J. Appl. Phys. 103, 083121 (2008). 23. J. Liu, Q. F. Dai, Z. M. Meng, X. G. Huang, L. J. Wu, Q. Guo, W. Hu, S. Lan, A. V. Gopal, and V. A. Trofimov, “All-optical switching using controlled formation of large volume three-dimensional optical matter,” Appl. Phys. Lett, 92, 233108 (2008). 会议论文 1. Z. M. Meng, “Controlling Fano resonances in photonic crystal nanobeams side-coupled with nanobeam cavities”, Asia Communications and Photonics Conference 2017, paper Su2A.152 (poster), Guangzhou, November 12, 2017. 2. Z. M. Meng, and Z. Y. Li, “Design and fabrication of silicon-polymer hybrid photonic crystal nanobeam structures for achieving integrated ultrafast all-optical switching”, PIERS 2014, (oral), Guangzhou, August 26, 2014. 3. Z. M. Meng, Y. H. Hu and Z. Y. Li, “Design and fabrication of low-refractive-index polymeric photonic crystal nanobeam structures,” Asia Communications and Photonics Conference 2012, paper AS4B.3 (oral), Guangzhou, November 7, 2012.
|