近几年主要研究工作如下: 1. 提出并通过微磁模拟建立了以手性磁体中斯格明子管为波导通道的非平面磁振子波导【Phys. Rev. Appl. 2020, 13: 034051 (arXiv:1901.00253, 2 Jan 2019)】。随后,被多个独立的理论研究【如:Lin et al. Phys. Rev. B 2019, 99: 140408 (arXiv:1901.03812, 12 Jan 2019);Kravchuk et al. Phys. Rev. B 2020, 102: 220408 (arXiv:1902.01420, 4 Feb 2019)】和实验研究【如:Weber et al. Phys. Rev. B 2019, 100: 060404 (arXiv:1906.00221, 1 Jun 2019);Seki et al. Nat. Commun. 2020, 11, 256 (arXiv:1902.10302, 27 Feb 2019);Birch et al., Nat. Commun. 2020, 11: 1726 (arXiv:1909.04528, 10 Sep 2019)】所证实。 2. 提出基于畴壁对控制斯格明子运动的方法并据此发展出逻辑NAND门和NOR门【Phys. Rev. B 2016, 94: 054408】,进一步提出基于条形畴壁抑制斯格明子霍尔偏转从而增强其运动的方法【Phys. Rev. B 2020, 101: 214432】。已被后续研究所验证并用于设计斯格明子器件【如:He et al. IEEE Magn. Lett. 2017, 8: 1;Luo et al. Nano Lett. 2018, 18: 1180;Song et al. Appl. Phys. Express 2020, 13: 063002】,并获得磁学路线图2017及综述论文点评引用【Sander et al. “The 2017 Magnetism Roadmap”, J. Phys. D: Appl. Phys. 2017, 50: 363001;Jiang et al. Phys. Rep. 2017, 704: 1】。 3. 提出并通过微磁模拟建立了基于条形畴壁的光纤型磁振子波导,利用该波导的频率选择特性设计成自旋波逻辑门【NPG Asia Mater. 2016, 8: e246】。在上述工作的基础上,进一步发展出基于自旋轨道矩在微纳磁线中可控注入波导通道的方法【Phys. Rev. Appl. 7, 054016 (2017)】及选择性调控自旋波衰减的方法【Appl. Phys. Lett. 2021, 118: 062405】。已被多个独立的实验所证实和发展【如:Albisetti et al. Commun. Phys. 2018, 1: 56;Sluka et al. Nat. Nanotech. 2019, 14: 328】,并获得综述论文重点引用和评价【Yu et al. “Magnetic texture based magnonics”, Phys. Rep. 2021】。 论文列表: 1. X. Xing* et al. Amplifying spin waves along Néel domain wall by spin-orbit torque, Appl. Phys. Lett. 118, 062405 (2021). 2. X. Xing* et al. Enhanced skyrmion motion via strip domain wall, Phys. Rev. B 101, 214432 (2020). 3. X. Xing* et al. Magnetic skyrmion tubes as nonplanar magnonic waveguides, Phys. Rev. Applied 13, 034051 (2020). 4. X. Xing et al. Paving spin-wave fibers in magnonic nanocircuits using spin-orbit torque, Phys. Rev. Applied 7, 054016 (2017). 5. X. Xing et al. Skyrmion domain wall collision and domain wall-gated skyrmion logic, Phys. Rev. B 94, 054408 (2016). 6. X. Xing et al. Fiber optics for spin waves, NPG Asia Mater. 8, e246 (2016). 7. X. Xing* et al. How do spin waves pass through a bend?, Sci. Rep. 3, 2958 (2013). 8. X. Xing* et al. Edge-state-dependent tunneling of dipole-exchange spin waves in submicrometer magnetic strips with an air gap, Nanotechnology 23, 495202 (2012). 9. X. Xing* et al. Frequency-selective manipulation of spin waves: micromagnetic texture as amplitude valve and mode modulator, New J. Phys. 17, 023020 (2015). 10. X. Xing et al. Bloch-point-mediated magnetic antivortex core reversal triggered by sudden excitation of a suprathreshold spin-polarized current, Appl. Phys. Lett. 93, 202507 (2008). 11. X. Xing et al. Modulation of propagation characteristics of spin waves induced by perpendicular electric currents, Appl. Phys. Lett. 95, 142508 (2009). 12. X. Xing* et al. Excitation of antisymmetric modes and modulated propagation of spin waves in bent magnonic waveguides, J. Phys. D: Appl. Phys. 48, 215004 (2015). 13. X. Xing et al. Magnetic properties of β-MnO2 thin films grown by plasma-assisted molecular beam epitaxy, J. Phys. Chem. C 112, 15526 (2008). 14. X. Xing et al. Spin-transfer torque driven magnetic antivortex dynamics by sudden excitation of a spin-polarized dc, J. Appl. Phys. 105, 093902 (2009). 15. X. Xing et al. Exchange-compelled vortices on magnetic core-shell cylinders and their spin-transfer torque driven dynamics, J. Appl. Phys. 105, 103909 (2009). 16. X. Xing et al. Current-controlled unidirectional edge-meron motion, J. Appl. Phys. 120, 203903 (2016). 17. X. Xing et al. Preparation and magnetic properties of BiFeO3 films in trilayered Bi3.25La0.75Ti3O12/BiFeO3/Bi3.25La0.75Ti3O12 structures, Mater. Sci. Eng. B 147, 95 (2008). 18. X. Xing* et al. Engineering spin-wave channels in submicrometer magnonic waveguides, AIP Adv. 3, 032144 (2013). |